TABLE OF EXPERIMENTS

Name of the Experiments

Mark
Obtained

Staff
Signature

SIMULINK BLOCKS

" X OUTPUT
— L 1]

m=2; b=0.7; k=1F(t}=0.5 PS5 XOuput

LHS=({d"2wdt"2)

e -

Integratorl

Integrator2

LH3 =RH3

1
=

GND

RHS=(F(t}-bidwdt}-xim

-

—

(F(t-b{dx/dt)Jm Adder2

20K1

OUTPUT WAVE FORMS

Adderl

o
”

o
~

Amplitude in Volts

o
w

5

Time in Sec

Expt. No: 1 Date:

ANALOG (OP AMP BASED) SIMULATION OF LINEAR DIFFERENTIAL
EQUATIONS

To Study the analog (op amp based) simulation of linear differential equations using
Mat lab-Simulink.
APPARATUS REQUIRED

» A PC with MATLAB package

PROCEDURE

1. To build a SIMULINK model to obtain response of a amplifier, the following procedure
is followed:

In MATLAB software open a new model in SIMULINK library browser.
From the continuous block in the library drag the transfer function block.
From the source block in the library drag the step input.

From the sink block in the library drag the scope.

From the math operations block in the library drag the summing point.
From the discrete block in the library drag the amplifier.

. Connect all to form a system and give unity feedback to the system.

For changing the parameters of the blocks connected double click the respective block.

10. Start simulation and observe the results in scope.

11. Compare the simulated and theoretical results.

RESULT

Thus the (op amp based) simulation of linear differential equations has been verified by using
Mat-lab Simulink.

PROGRAMME

A.OPEN LOOP RESPONSE (FIRST ORDER SYSTEM)
T.F=4/(s+2)

1. Response of system to Step input

n=[4];

d=[1 2],

sys=tf(n,d);

step(sys)

2. Response of system to Impulse input
n=[4];

d=[1 2];

sys=tf(n,d);

step(sys)

impulse(sys)

Step Response

/—/_///7

_

Amplitude

I
1.5
Time (sec)

Expt. No:2 Date:

NUMERICAL SIMULATION OF GIVEN NONLINEAR DIFFERENTIAL
EQUATIONS.
AIM
To digitally simulate the characteristics of Linear SISO systems using Numerical Simulation

of given nonlinear differential equations.

APPARATU REQUIRED
1. APC with MATLAB package.

THEORY

State Variable approach is a more general mathematical representation of a system, which,
along with the output, yields information about the state of the system variables at some
predetermined points along the flow of signals. It is a direct time-domain approach, which
provides a basis for modern control theory and system optimization. SISO (single input single
output) linear systems can be easily defined with transfer function analysis. The transfer

function approach can be linked easily with the state variable approach.

The state model of a linear-time invariant system is given by the following equations:
X (t) = A X(t) + B U(t) State equation
Y (t) = C X(t) + D U(t) Output equation

Where A = n X n system matrix, B = n x m input matrix,

C=p x n output matrix and

D = p x mtransmission matrix,

PROGRAM:

B. Close Loop Response
1. Response of Step input
n=[4];

d=[12];

sys=tf(n,d);
sys=feedback(sys,1,-1)
step(sys)

2. Response of Impulse input
n=[4];

d=[1 2],

sys=tf(n,d);
sys=feedback(sys,1,-1)

impulse(sys)

Step Response

—

System: sys Time

(sec): 0.192

Amplitude: 0.456
-

r
0.5
Time (sec)

Second Order System
TF=4/s2+65+16

1. Open Loop Response of Step Input
n=[4];

d=[1 6 16];

sys=tf(n,d);

step(sys)

2. Open Loop Response of impulse Input

n=[4];

d=[1 6 16];
sys=tf(n,d);
impulse(sys)

Amplitude

r
1 15
Time (sec)

Impulse Response

Amplitude

Time (sec)

Close Loop Response

1. Step Input
n=[4];

d=[1 6 16];

sys=tf(n,d);
sys=feedback(sys,1,-1) ;
step(sys)

2.

Impulse Input

n=[4];

d=[1 6 16];
sys=tf(n,d);
sys=feedback(sys,1,-1) ;

impulse(sys)

Amplitude

Step Response
T T

0.8
Time (sec)

Impulse Response

Amplitude

Time (sec)

RESULT

Thus the digital simulation of time response characteristics of a first and second order linear

system with step and impulse inputs were simulated using MATLAB and outputs are

observed for respective inputs.

PROGRAM

% Simulation of discrete model
clear,

clc

% Model Parameters

a=0.25;b=2;

% Simulation Parameters
Ts=0.1; %s

Tstop=30; %s

uk=1; % Step Response

% Simulation

for k=1: (Tstop/Ts)

x (k+1)=(1-a*Ts) .*x (k) + Ts*b*uk;
end

% Plot the Simulation Results
k=0:Ts:Tstop;

plot (k, x)

grid on

OUTPUT:

w
-
z
=
=
=
=
-

|
16
Time in sex

Expt. No: 3 Date:

REAL TIME SIMULATION OF DIFFERENTIAL EQUATIONS.

AIM

To check the real time simulation for the given differential equation x = —ax + bu using
MATLAB Software.

APPARATUS REQUIRED

» A PC with MATLAB package

PROCEDURE

Open the MATLAB software using a MATLAB icon Open a blank M- File or
Simulink file (File, New, M file) Type the given program in M file

Run the program using debug option or using F5 key

Find the stability of the system in the output graph and compare it with

theoretical value

RESULT

Thus the real time simulation for the given differential equation x = —ax + bu using
MATLAB Software was executed.

SIMULINK MODEL

DISPLACEMENT

p p L w1 m= 1: Fitj= 25:B= 5: k= 25

- = Ll
k1 5

Integrator Integratori

output1

/ELOCITY
W

m(d"2x/dt"2) = F(f)-B(dx/dt)-kx

Amplitude

/

1 15
Time insec

Expt. No: 4 Date:

MATHEMATICAL MODELING AND SIMULATION OF PHYSICAL SYSTEMS IN
AT LEAST TWO FIELDS MECHANICAL, ELECTRICAL AND CHEMICAL
PROCESS

AIM
To design mathematical modelling and simulation of physical systems in at least two fields:

mechanical, electrical, and chemical processes, using MATLAB Software.
APPARATUS REQUIRED

» A PC with MATLAB package

PROCEDURE

Open the MATLAB software using a MATLAB icon Open a blank M- File or
Simulink file (File, New, M file) Type the given program in M file

Run the program using debug option or using F5 key

Find the stability of the system in the output graph and compare it with

theoretical value

RESULT

Thus the mathematical modelling and simulation of physical systems in at least two fields:

mechanical, electrical, and chemical processes, using MATLAB software, were done.

PROGRAM:

function[Weights Model] = system identification()

%clear all;

sclc;

% Direct modeling of Electrical system of the plant using LMS algorithm
$Plant Parameters

Weights Plant=[0.26 0.93 0.26] ; % Transfer function coefficients

N=input ('Enter the no of the iterations/input samples: '); $input number of
samples.

Input Plant= rand(1,N); % input to the plant with mean zero and input to
model is also same.

% Model Parameters

Weights Model=[0 0 0];

Input Model=Input Plant;

Learning Para=input ('Enter the Learning Parameter value:'); % Learning rate
of the model

$Signal Power to noise power
snr=input ('Enter the snr value : ');

$Signal Power and Noise Power
sp=var (Input Plant);
np =(sp) *power (10, - (snr/10)) ;

%Noise to be added
Noise=sqrt (np) * (rand (1,N)-0.5) ;

G Intialization------------------- %
Plant Output. Plant Output (l)=Input Plant (1) *Weights Plant(1l);

Plant Output (2)=Input Plant (2)*Weights Plant (1)+Input Plant (1) *Weights Plan
t(2);

%$Model Output
Model Output (1)=Input Model (1) *Weights Model (1) ;

Model Output (2)=Input Model (2) *Weights Model (1) +Input Model (1) *Weights Mode
1(2);

% Plant output with added noise
Plant Output (1)=Plant Output (1) +Noise(1l);
Plant Output (2)=Plant Output (2)+Noise (2);

)

s Error
error (1)=Plant Output (1)-Model Output(1l);
error (2)=Plant Output (2) -Model Output (2);

$Weight Values

Weights Model (1)=Weights Model (1) + (2*Learning Para*Input Model (1) *error(1l))

’

Weights Model (1:2)=Weights Model (1:2)+(2*Learning Para*Input Model (2:-
1:1)*error(2));

Expt. No: 5 Date:

SYSTEM IDENTIFICATION THROUGH PROCESS REACTION CURVE

AIM

To design the system identification through the process reaction curve by using MATLAB

Software.

APPARATUS REQUIRED

» APC with MATLAB package

PROCEDURE

Open the MATLAB software using a MATLAB icon Open a blank M- File or
Simulink file (File, New, M file) Type the given program in M file

Run the program using debug option or using F5 key

Find the stability of the system in the output graph and compare it with

theoretical value

Applying Adaptive LMS algorithm-------- %
for i=3:1:N

sOutputs

Plant Output
1) *Weights_Plant

Model Output
1) *Weights Model

=Input Plant (i) *Weights Plant(l)+Input Plant (i-
+Input Plant (i-2)*Weights Plant(3);
=Input Model (i) *Weights Model (1)+Input Model (i-
+Input Model (i-2) *Weights Model (3);

)
)
1)
)

$White gaussian noise signal added to the output of the plant.
Plant Output (i)=Plant Output (i) +Noise (i) ;
error (i) =Plant Output (i) -Model Output (i) ;

$Weight Update using LMS algorithm

Weights Model=Weights Model + (2*Learning Para*Input Model (i:-1:i-
2)*error(i)):;
end

$Plots of error square and log of normalized error square

t=1:1:N;
error_square=power (error, 2);
Max error square=max (error_square) ;

Normalized error Square=error square./Max _error square;

plot(t,error square);

legend('error square');

title('Plot of error square Vs no of iterations');
xlabel ('iterations');

ylabel ('error square')

figure,

plot (t,log(Normalized error Square)) ;

legend ('Normalized error square log');

title('Plot of Normalized error square log Vs no of iterations');
xlabel ('iterations');

ylabel ('Normalized error square log')

== mmmmmm s mmm oo Testing mode------------------- %
s=30;
Input test=rand(1l,s);

for j= 3:1:s

Plant Out test(l)=Input test(l)*Weights Plant(1l);
Plant Out test (2)=Input test(2)*Weights Plant (l)+Input test (l)*Weights Plan
t(2);lantioutitest(j)=1nput7test(j)*WeightsiPlant(1)+Input7test(j—
1) *Weights Plant (2)+Input test(j-2) *Weights Plant (3);

Out Model test (l)=Input test(l)*Weights Model (1) ;

16

Out Model test (2)=Input test(2)*Weights Model (1) +Input test (1) *Weights Mode
1(2);

Out Model test (j)= Input test(j)*Weights Model (1)+Input test(j-
1) *Weights Model (2) +Input test (j-2) *Weights Model (3);

error_test(l)= Plant Out test(l)-Out Model test(1l);
error_test(2)= Plant Out test(2)-Out Model test (2);
error_test(j)= Plant Out test(j)-Out Model test(Jj);

end

p=1l:1:s;

figure,

plot (p,Plant Out test,'-ro',p,Out Model test,'-.Db');

legend ('Plant Out test', 'Out Model test');

title('Comparision of outputs of Plant and Model during testing');
xlabel ('iterations');

ylabel ('Output')

square error= error test.”2;
SSE=sum (square_error) ;

RESULT

Thus the design of the system identification through the process reaction curve using
MATLAB Software was executed.

Real Axis

a
ol
=
=
Q =
N
Jab]
©
a

(2*s+1)/(s"2+3*s+2)

k=07

feedback(G*k,1)

pzmap(T)

sixy AreuibeL|

grid, axis([-2 0 -1 1])

PROGRAM
s = tf('s))

G
T

Expt. No: 6 Date:

STABILITY ANALYSIS USING POLE ZERO MAPS AND ROUTH HURWITZ
CRITERION IN SIMULATION PLATFORM
A. STABILITY ANALYSIS USING POLE ZERO MAPS

AIM

To check the stability analysis using pole zero maps for the given system or transfer function
using MATLAB Software.

APPARATUS REQUIRED

» APC with MATLAB package

PROCEDURE

Open the MATLAB software using a MATLAB icon Open a blank M- File or
Simulink file (File, New, M file) Type the given program in M file
Run the program using debug option or using F5 key

Find the stability of the system in the output graph and compare it with

theoretical value

RESULT

Thus the designs for stability analysis using pole zero maps for the given system or transfer

function using MATLAB were executed.

PROGRAM

% This script computes the roots of the characteristic
% equation D(s) = s*3 + 2 ™2 + 4 s + K for 0 < K < 20
K=[0:0.5:201]; $ 0 < K < 20

for i=l:1length(K); % for loop

g=[1 2 4 K(1)]1;

p(:,1i)=roots(q);

end

figure (1)

plot (real (p),imag(p), 'x"),

grid xlabel ('Real axis')

ylabel ('lmaginary axis")

gtext ('K < 8") % Writing text on graphic
gtext ('K = 8'")

gtext ('K > 8")

num=[1];

den=[1 2 4 9];

sysg=tf (num, den) ;

sys=feedback (sysqg, [1]);

pole (sys) % of closed loop system
figure (2)

step(sys);

=3

SOONOOOOOOO0H M MM M M M M M M M X b3

[|

»
=
<L
e
&
£ 0
=)
&
E

-

Daal Avia

Expt. No: 6 Date:

STABILITY ANALYSIS USING POLE ZERO MAPS AND ROUTH HURWITZ
CRITERION IN SIMULATION PLATFORM

B.STABILITY ANALYSIS USING ROUTH HURWITZ CRITERION IN
SIMULATION PLATFORM

AIM

To check the stability analysis is using Routh Hurwitz Criterion for the given system or

transfer function using MATLAB Software.

APPARATUS REQUIRED

» A PC with MATLAB package

PROCEDURE

Open the MATLAB software using a MATLAB icon Open a blank M- File or
Simulink file (File, New, M file) Type the given program in M file

Run the program using debug option or using F5 key

Find the stability of the system in the output graph and compare it with
theoretical value

RESULT
Thus the stability analysis is using Routh Hurwitz Criterion for the given system or transfer
function using MATLAB Software was executed.

21

PROGRAM
% Characteristic polynomial
% C(s)=s"3+2s5"2+10s"2+15
% Input coeff=Vector of coefficients of the C(s);e.qg.,[1 2 10 15]
clc;
clear;
coeff=input ('Enter the coefficients:')
L=length (coeff);
if (rem (L, 2)==0)
Routh array=zeros(L,L/2);
for i=1:L/2
Routh array(l,i)=coeff (1,2*i-1);
Routh array(2,i)=coeff (1,2*1i);
end
else
Routh array=zeros (L, (L+1)/2);
for i=1:(L+1)/2
Routh array(l,i)=coeff (1,2*i-1);
if i==(1+1)/2
break;
end
Routh array(2,i)=coeff (1,2*1);
end

i=3:size (Routh array, 1)
if Routh array(i-1,1)==0
Routh array(i-1,1)=0.001;
end
for J=l:size (Routh array,2)-1
Routh_array(i,j):(—1/Routh_array(i—1,l))*det([Routh_array(i—Z,l)...
Routh array(i-2,J+1);Routh array(i-1,1) Routh array(i-1,J+1)]);
end
end
Routh array
S=sign (Routh array);
count=0;
for i=1:L
if S(i,1)==1
count=count+1;
end
end
if count==
disp ('The system is stable')
else
disp ('The system is unstable')
end
% verify
fprintf ('\n'");
disp('verification:")
Roots=roots (coeff);
disp('poles:")
disp (Roots)

Expt. No: 6 Date:

STABILITY ANALYSIS USING POLE ZERO MAPS AND ROUTH HURWITZ
CRITERION IN SIMULATION PLATFORM

C.STABILITY ANALYSIS USING ROUTH HURWITZ CRITERION IN
SIMULATION PLATFORM

AIM

To check the stability analysis is using Routh Hurwitz Criterion for the given system or

transfer function using MATLAB Software.

APPARATUS REQUIRED

» A PC with MATLAB package

PROCEDURE

Open the MATLAB software using a MATLAB icon Open a blank M- File or
Simulink file (File, New, M file) Type the given program in M file
Run the program using debug option or using F5 key

Find the stability of the system in the output graph and compare it with
theoretical value

OUTPUT:
Enter the coefficients: [1 122 11 10]

coeff =

1 1 2

Routh_array =

1.0000 2.0000 11.0000
1.0000 2.0000 10.0000
0.0010 1.0000 0
-998.0000 10.0000 0
1.0000 0 0
10.0000 0 0

The system is unstable

verification: poles:
1.0589 + 1.4691i
1.0589 - 1.4691i
-1.0961 + 1.4467i
-1.0961 - 1.4467i
-0.9256

RESULT

Thus the stability analysis is using Routh Hurwitz Criterion for the given system or transfer

function using MATLAB Software was executed.

PROGRAM

num=[0 4 5];

den=[1 4 21];

sysl=tf (num, den);

rlocus (sysl)

grid

title ('Root locus plot of system G(s) = (4s+5)/(s2+4s+21)")

OUTPUT:

Root locus plot of system G(s) = (4s+5)f(s2+4s5+21)
—

T T < :
0.85 o0e K- A4 o.k=

Imaginary Axis
=]

1
-

Real Axis

Expt. No: 7 Date:

ROOT LOCUS BASED ANALYSIS IN SIMULATION PLATFORM

AIM

To Check the stability analysis of the given system or transfer function of rootlocus using
MATLAB Software.

APPARATUS REQUIRED

» A PC with MATLAB package

PROCEDURE

Open the MATLAB software using a MATLAB icon Open a blank M- File or
Simulink file (File, New, M file) Type the given program in M file

Run the program using debug option or using F5 key

Find the stability of the system in the output graph and compare it with

theoretical value

RESULT

Thus the designs of root locus for the given transfer function using MATLAB Software was

executed.

PROGRAM
%Bode Plot for the Transfer Function=10/(s*+8s?+12s)

nu=[10];
de=[1 8 12 0];
sys=tf(nu,de);
bode(sys);

grid on;

Bode Diagram

TTTE

Magnitude (dB)

—~
(=)
D

)

=
[
172
@«

=

o

ercE

0
10

Frequency (rad/sec)

Expt. No:8 Date:

DETERMINATION OF TRANSFER FUNCTION OF A PHYSICAL SYSTEM USING
FREQUENCY RESPONSE AND BODE’S ASYMPTOTES.
AIM

To Design the bode plot for the given system and also determine the gain and phase margin

using MATLAB Software.

APPARATUS REQUIRED

» A PC with MATLAB package

PROCEDURE

Open the MATLAB software using a MATLAB icon Open a blank M- File or
Simulink file (File, New, M file) Type the given program in M file

Run the program using debug option or using F5 key

Find the stability of the system in the output graph and compare it with

theoretical value

RESULT
Thus the design of bode plot for the given system using MATLAB Software was executed.

PROGRAM

1. Lag Compensator
K=9600
dl=conv ([l 4 0], [1 80]) % used to formulate the polynomial
G=tf (K,dl) % generate the transfer function.
margin (G)
pmreg=input ('Enter Required Phase Margin') % enter 33 as given in gquestion
pmreg=pmredq+5
phgcm=pmreg-180
wgcm=input ('Enter new gain cross over frequency') % from the first bode
plot use the mouse pointer and locate wgcm corresponding to phgcm.
[Beta, pl=bode (G, wgcm)
T=10/wgcm
Zc=1/T
Pc=1/ (Beta*T)
Ge=tf ([1 Zc],[1 Pc]l)
sys=Gc*G/Beta
margin (sys)

2..LEAD COMPENSATOR

clear variables;
% plant G parameters
= tf('s");
= 2.5; b =27;
Gain K for PO=10
0; % percentage overshoot
1og (100/P0O) /sgrt (pi”2+ (log(100/P0O)) "2); % damping ratio
[d = round(100*zeta)+1l; % PM desired at the nearest round value
= tand(180-90-PM d);
omega ¢ = roots([1 (at+b)/h -a*bl); % new omega c
K = oﬁega_c(2)*sqrt(omega_c(2)A2+a“2)*sqrt(ome&a_c(2)A2+bA2); % new gain K
G K/ (s*(s+a)*(s+b)); % Plant G
figure;
margin (G) ;

Bode Diagram
Gm = 26 2 dB (at 8 22 rad/sec), Pm = 60 deg (at 1.29 rad/sec)
T T T

Ll
10'
Frequency (rad/sec)

30

Expt. No:9 Date:

DESIGN OF LAG, LEAD COMPENSATORS AND EVALUATION OF CLOSED
LOOP PERFORMANCE
AIM

To design the lag, lead compensators and evaluation of closed loop Performance using
MATLAB Software.

APPARATUS REQUIRED

» A PC with MATLAB package

PROCEDURE

Open the MATLAB software using a MATLAB icon Open a blank M- File or
Simulink file (File, New, M file) Type the given program in M file

Run the program using debug option or using F5 key

Find the stability of the system in the output graph and compare it with

theoretical value

RESULT

Thus the design of lag, lead compensators and evaluation of closed loop Performance using
MATLAB Software was executed.

PROGRAMME
% Step Response for TF 1/(s~2+10s+20)

num=[1];
den=[1 10 20];
figure(1);
step(num,den)

OUTPUT
% Step Response for TF 1/(s"2+10s+20)

- = a

% Proportional Controller
Kp=600;

numl=[Kp];

denl=[1 10 20+Kp];
t=0:0.01:2;

figure(2);

step(numl,denl,t)

grid;

OUTPUT
% Proportional Controller

oo & = Den- 3 OE =

Expt. No: 10 Date:

DESIGN OF PID CONTROLLERS AND EVALUATION OF CLOSED LOOP
PERFORMANCE

To Study the effect of P, PI, PID controllers using Mat lab-Simulink.
APPARATUS REQUIRED

» A PC with MATLAB package

PROCEDURE

12. To build a SIMULINK model to obtain response of a P, PI, PID Controllers, the
following procedure is followed:

13. In MATLAB software open a new model in SIMULINK library browser.
14. From the continuous block in the library drag the transfer function block.
15. From the source block in the library drag the step input.

16. From the sink block in the library drag the scope.

17. From the math operations block in the library drag the summing point.
18. From the discrete block in the library drag the PID controller.

19. Connect all to form a system and give unity feedback to the system.

20. For changing the parameters of the blocks connected double click the respective block.

21. Start simulation and observe the results in scope.

22. Compare the simulated and theoretical results.

% Proportional Derivative Controller
Kp=300;
Kd=10;
num2=[Kd Kp];
den2=[1 10+Kd 20+Kp];
t=0:0.01:2;
figure(3);
step(num2,den2,t)
grid;
OUTPUT:
% Proportional Derivative Controller

m
ot

% Proportional Integral Controller
Kp1=30;
Ki=70;
num3=[Kpl Kil;
den3=[1 10 20+Kp1 Ki];
t=0:0.01:2;
figure(4);
step(num3,den3,t)
grid;
OUTPUT:

% Proportional Integral Controller

o

%Proportional Integral Derivative Controller
Kp2=350;

Kd2=50;

Ki2=300;

num4=[Kd2 Kp2 Ki2];
dend=[1 10+Kd2 20+Kp2 Ki2];
t=0:0.01:2;

figure(5);

step(num4,dend,t)

grid;
OUTPUT
%Proportional Integral Derivative Controller

RESULT
Thus the effect of P, PI, PD, and PID controller has been verified by using Matlab coding.

PROGRAM:

%% Effect of sampling and verification of sampling theorem
clear

close all

clc

%% Problem
Vm1=20;

Vm2=10;

DOB=27;

MOB=11;
f1=MOB*10;
£2=DOB*10;
wl=2*pi*f1;
w2=2*pi*f2;
t=0:0.00005:0.04;
v1l=Vml*sin(wl*t);
v2=Vm2*sin(w2*t);
v=v1+v2;

Voltage magnitude for vil
Voltage magnitude for v2
Date of birth

Month for birth

Frequency for vl

Frequency for v2

Frequency for vl (rad/sec)
Frequency for v2 (rad/sec)
Time for plotting signal
vl

v2

Combination

3R 3R R 3R 3% oR R R 3 ¥ X N

figure(1)

subplot(2,2,1)

plot(t,vl)

hold on

plot(t,v2)

grid on

xlabel('Time (s)'")
ylabel('v_1 and v_2")
title('Voltage waveforms')

legend('v_1','v_2")

subplot(2,2,2)

plot(t,v)

grid on

xlabel('Time (s)")
ylabel('v")
title('Combined waveform')

%% Defining sampling periods

fm=max(f1,f2); % Maximum frequency component

fsl=2*fm; Tsl=1/fsl; % Just same

fs2=3*fm; Ts2=1/fs2; % fs>2fm (satisfying sampling theorem)
fs3=1*fm; Ts3=1/fs3; % fs<2fm (not satisfying sampling theorem)

%% fs>2fm (satisfying sampling theorem)
ts2=0:Ts2:0.04;

v1ls2=Vml*sin(wl*ts2);
v2s2=Vm2*sin(w2*ts2);

vs2=v1s2+v2s2;

subplot(2,2,3)

stem(ts2,vs2)

xlabel('Time (s)")

ylabel('v")

title('Signal sampled with f_s>2f m')

Expt. No: 11 Date:

DISCRETIZATION OF CONTINUOUS SYSTEM AND EFFECT OF SAMPLING

AIM

1. To plot a continuous-time signal using MATLAB.

2. To sample the signal at a faster, lower, and just right (satisfying criteria of sampling
theorem) sampling rates.

APPARATUS REQUIRED

» A PC with MATLAB package

PROCEDURE

Open the MATLAB software using a MATLAB icon Open a blank M- File or
Simulink file (File, New, M file) Type the given program in M file

Run the program using debug option or using F5 key

Find the stability of the system in the output graph and compare it with

theoretical value

%% fs<2fm (not satisfying sampling theorem)
1ts3=0:Ts3:0.04;

vls3=Vml*sin(wl*ts3); v2s3=Vm2*sin(w2*ts3);
vs3=v1s3+v2s3;

subplot(2,2,4)

stem(ts3,vs3)

xlabel('Time (s)")

ylabel('v")

title('Signal sampled with f_s<2f m")

%% Comparison of signals (by plotting zoh type signals)
figure(2)

subplot(2,1,1)

plot(t,v,'b")

hold on

stairs(ts2,vs2, 'k")

xlabel('Time (s)")

ylabel('v")

title('Comparison of signals")

legend('Original Signal','f_s>2f m")

subplot(2,1,2)

plot(t,v,'b")

hold on

stairs(ts3,vs3, '--r")

xlabel('Time (s)")

ylabel('v")

title('Comparison of signals')
legend('Original Signal', 'f_s<2f m')

OUTPUT

Voltage waveforms Combined waveform

0 0.005 0.01 0015 0.02 0025 0.03 0.035 0.04 : 0 0.005 0.01 0015 0.02 0.025 0.03 003 0.04
Time (s) Time (s)

Signal sampled with f>2f, | Signal sampled with f.<2f, |

e T olft T?N Tf ? f
CUTW) T

. 20
0 0005 001 0015 002 0025 003 0035 0.04 0 0005 001 0015 002 0025 0.03 0.035 0.04
Time (s) Time (s)

Comparison of signals

T N
Original Signal
f>2f

r
0.02
Time (s)
Comparison of signals
T T
Original Signal
fe<2f,

r
0.02
Time (s)

RESULT

Thus the continuous-time signal and sample the signal at a faster, lower, and just right

(satisfying criteria of sampling theorem) sampling rates were done.

PROGRAM:

clc;
=12 1;-1 -4 -3; -1 2 3];
= [1; 4; 6];
= [112];
D=0;
disp('Rank of the Matrix')
Rankc=rank ([B A*B A"2*B]) % To check the controllability
Ranko= rank ([C' A'*C' A'"2*C']) % To check the observability
Rankoc= rank ([C*B C*A*B C*A"2*B]) % To check the output Controllability

OUTPUT

Rank of the Matrix

Rankc = 3

Ranko =3

Rankoc =1
From the above, the system is completely state controllable and observable. The system is not
output controllable since the rank of the matrix is not three.

Alternate Program:

clc;
A=[121;-1 -4 -3; -1 2 31;
B = [1; 4; 6];
c=1[112];
D=0;
disp('Rank of the Matrix'")
Rankc=rank ([B A*B A"2*B]) $ To check the controllability
Ranko= rank ([C' A'*C' A'"2*C']) % To check the observability
Rankoc= rank ([C*B C*A*B C*A"2*B]) % To check the output Controllability
M=ctrb (A, B) ;
rank of M=rank (M) ;
if (rank of M==0)
disp('the given tf is not controllable');
else
disp('the given tf i controllable ');% since rank exists which is
equal to order of A
end
systemorder=length (A) ;
N=(ocbsv (A,C)) ;
rank of N=rank(N) ;
if (rank of N==0)
disp('the given tf i not observable');% since rank exists which is
equal to order of A
else
disp('the given tf i observable') ;
end

OUTPUT

Rank of the Matrix

Rankc = 3

Ranko =3

Rankoc =1

the given tf is controllable

the given tf is observable

Expt. No:12 Date:

TEST OF CONTROLLABILITY AND OBSERVABILITY IN CONTINUOUS AND
DISCRETE DOMAIN IN SIMULATION PLATFORM
AIM

To check for controllability and observability by MATLAB Program

APPARATUS REQUIRED

» A PC with MATLAB package

PROCEDURE

Open the MATLAB software using a MATLAB icon Open a blank M- File or
Simulink file (File, New, M file) Type the given program in M file

Run the program using debug option or using F5 key
Find the stability of the system in the output graph and compare it with

theoretical value

RESULT

Thus the controllability and observability of the system verified by MATLAB Program.

PROGRAM:

% Description: M-file showing design and implementation of dynamic
% pole placement state feedback controller

[

s clear memory and figure

[

% state matrices

Acl ; I : ; % closed-loop system w/error dynamics
Bcl ;
yd = 3.0 ; % desired output
dt = 0.001 ; % simulation time step
% Peform First State Feedback Design for poles at -2,-2 and -20
acker (Acl, Bcl, [-2 -2 -20]) % determine feedback gains
0] ; vy =C*x ; % initial conditions
.0
.0 ; yvec = 0.0 ; 1 =1 ; % define vectors for storing
for t = 0.0:dt:5.0, $ loop over time for simulation
inte = inte + dt*(y - yd) ; % integral of output error

[

u = -K*[inte; x] ; % state controller

xdot = A*x + B*u ; $ plant dynamics
x = xdot*dt + x ; % euler integrate dynamics
y = C*x ; % output equation
yvec (i) =y ; tvec(i) = t ; % store output & time into vectors
i=1i+1; % increment vector index
end ;
plot (tvec, yvec) ; % plot output with labels
xlabel ("time (sec)') ; ylabel('y') ;
title ('Output Response of Controlled System') ;
hold on ;
% Perform Second State Feedback Design for ploles at -1,-2 and -20
[num,den] = ss2tf(A,B,C,[0]) ; % find TF for open loop system
printsys (num,den, 's') ;
K = acker (Acl, Bcl, [-1 -2 -20]) % determine feedback gains
; vy =C*x ; % initial conditions

[

; yvec = 0.0 ; 1 =1 ; % define vectors for storing

for t 0.0:dt:5.0, % loop over time for simulation
inte = inte + dt*(y - yd) ; % integral of output error
u = -K*[inte; x] ; % state controller
xdot = A*x + B*u ; $ plant dynamics
x = xdot*dt + x ; % euler integrate dynamics
output equation

tvec(i) = t ; % store output & time into vectors

« O
7 °
1 ; % increment vector index

plot (tvec, yvec, 'r-.') ; % plot alternative design output
hold off ;
legend('poles = -2, -2, -20', 'poles = -1, -2, -20") ;

Expt. No: 13 Date:

STATE FEEDBACK AND STATE OBSERVER DESIGN AND EVALUATION OF
CLOSED LOOP PERFORMANCE
AIM

To check for State feedback and state observer design and evaluation of closed loop

performance by MATLAB Program.

APPARATUS REQUIRED

» A PC with MATLAB package
PROCEDURE
Open the MATLAB software using a MATLAB icon Open a blank M- File or

Simulink file (File, New, M file) Type the given program in M file
Run the program using debug option or using F5 key
Find the stability of the system in the output graph and compare it with
theoretical value
OUTPUT:

Output Response of Controlled System
35 T T T

T
poles =-2,-2,-20
poles =-1,-2, -20

Amplitude

i
2.5
time (sec)

Pole locations are more than 10% in error.

K= 40.0000 -0.5000 8.0000

num/den =

sN2+8s+5
K =20.0000 8.5000 7.5000

ALTERNATE PROGRAM
% Original Plant

-20.6 2;2 -1]

sys=ss(a,b,c,d)
eig(sys)
rank (obsv (sys))
%% Observer pole placement at -10 and -9
% This observer will lead to a fast approximation of the states
L T=place(a',c',[-10,-9])
L=L T'
%% Observer pole placement at -1 and -2
% This observer will lead to a slower approximation of the states
% L anastrofos=place(a',c', [-1,-2])
% L=L_anastrofos'
% State observer Feedback
a=[-20.6 1;0 -1]
b=[0;1]
c=[1 1]
d=0
sys=ss(a,b,c,d)
eig(sys)
rank (obsv (sys))
rank (ctrb(sys))
K=place(a,b, [-5 -6])
OUTPUT:
a= -20.6000 2.0000 2.0000 -1.0000
b=51
c=11
d=0
a=x1 x2x1 -206 x2 2 -1
b=ulxl5x2 1
c=x1 x2yl 11
d=ulyl O
Continuous-time model.
ans = -20.8020 -0.7980
ans =2
L T=-6.7429 4.1429
L =-6.7429 4.1429

= -20.6000 1.00000 -1.0000
01

1

x1 x2x1-206 1x2 0 -1
ulxl 0x2 1

c=x1x2yl 11

d=ulylO

Continuous-time model.

ans = -20.6000 -1.0000

ans=2

ans=2

K =227.7600 -10.6000

oY oo T
TR L T L T
O

RESULT

Thus the State feedback and state observer design and evaluation of closed loop performance
by MATLAB Program was done.

	SIMULINK BLOCKS
	AIM
	APPARATUS REQUIRED
	PROCEDURE
	RESULT
	PROGRAMME
	1. Response of system to Step input
	AIM (1)
	APPARATU REQUIRED
	THEORY
	PROGRAM:
	1. Response of Step input
	2. Response of Impulse input
	Second Order System TF= 4/s2+6s+16
	2. Open Loop Response of impulse Input
	Close Loop Response
	2. Impulse Input
	RESULT (1)
	PROGRAM
	OUTPUT:
	AIM (2)
	APPARATUS REQUIRED (1)
	PROCEDURE (1)
	RESULT (2)
	SIMULINK MODEL
	Time in sec
	AIM (3)
	APPARATUS REQUIRED (2)
	PROCEDURE (2)
	RESULT (3)
	PROGRAM: (1)
	SYSTEM IDENTIFICATION THROUGH PROCESS REACTION CURVE
	APPARATUS REQUIRED (3)
	PROCEDURE (3)
	RESULT (4)
	PROGRAM (1)
	STABILITY ANALYSIS USING POLE ZERO MAPS AND ROUTH HURWITZ CRITERION IN SIMULATION PLATFORM
	AIM (4)
	APPARATUS REQUIRED (4)
	PROCEDURE (4)
	RESULT (5)
	PROGRAM (2)
	STABILITY ANALYSIS USING POLE ZERO MAPS AND ROUTH HURWITZ CRITERION IN SIMULATION PLATFORM (1)
	AIM (5)
	APPARATUS REQUIRED (5)
	PROCEDURE (5)
	RESULT (6)
	PROGRAM (3)
	STABILITY ANALYSIS USING POLE ZERO MAPS AND ROUTH HURWITZ CRITERION IN SIMULATION PLATFORM (2)
	AIM (6)
	APPARATUS REQUIRED (6)
	PROCEDURE (6)
	OUTPUT: (1)
	RESULT (7)
	PROGRAM (4)
	OUTPUT: (2)
	AIM (7)
	APPARATUS REQUIRED (7)
	PROCEDURE (7)
	RESULT (8)
	PROGRAM (5)
	DETERMINATION OF TRANSFER FUNCTION OF A PHYSICAL SYSTEM USING FREQUENCY RESPONSE AND BODE’S ASYMPTOTES.
	APPARATUS REQUIRED (8)
	PROCEDURE (8)
	RESULT (9)
	PROGRAM (6)
	2..LEAD COMPENSATOR
	DESIGN OF LAG, LEAD COMPENSATORS AND EVALUATION OF CLOSED LOOP PERFORMANCE
	APPARATUS REQUIRED (9)
	PROCEDURE (9)
	RESULT (10)
	PROGRAMME (1)
	OUTPUT
	% Proportional Controller
	OUTPUT (1)
	DESIGN OF PID CONTROLLERS AND EVALUATION OF CLOSED LOOP PERFORMANCE
	APPARATUS REQUIRED (10)
	PROCEDURE (10)
	% Proportional Derivative Controller
	OUTPUT: (3)
	% Proportional Integral Controller
	OUTPUT: (4)
	%Proportional Integral Derivative Controller
	OUTPUT (2)
	PROGRAM: (2)
	DISCRETIZATION OF CONTINUOUS SYSTEM AND EFFECT OF SAMPLING
	APPARATUS REQUIRED (11)
	PROCEDURE (11)
	OUTPUT (3)
	PROGRAM: (3)
	OUTPUT (4)
	Alternate Program:
	OUTPUT (5)
	TEST OF CONTROLLABILITY AND OBSERVABILITY IN CONTINUOUS AND DISCRETE DOMAIN IN SIMULATION PLATFORM
	APPARATUS REQUIRED (12)
	PROCEDURE (12)
	RESULT (11)
	PROGRAM: (4)
	STATE FEEDBACK AND STATE OBSERVER DESIGN AND EVALUATION OF CLOSED LOOP PERFORMANCE
	APPARATUS REQUIRED (13)
	PROCEDURE (13)
	OUTPUT: (5)
	Pole locations are more than 10% in error.
	num/den = 2 s + 2
	s^2 + 8 s + 5
	ALTERNATE PROGRAM
	OUTPUT: (6)
	b = 5 1
	d = 0
	b = u1 x1 5 x2 1 c = x1 x2 y1 1 1 d = u1 y1 0
	ans = 2
	L = -6.7429 4.1429
	b = 0 1
	d =0
	b = u1 x1 0 x2 1 c = x1 x2 y1 1 1 d = u1 y1 0
	ans = 2 (1)
	K =227.7600 -10.6000

